Albania 2023

The $27^{r d}$ Balkan Mathematical Olympiad Tirana, June 25, 2023

Problem 1.

Find all pairs (a, b) of positive integers such that $a!+b$ and $b!+a$ are both powers of 5 .

Solution. The condition is symmetric so we can assume that $b \leq a$.
The first case is when $a=b$. In this case, $a!+a=5^{m}$ for some positive integer m. We can rewrite this as $a \cdot((a-1)!+1)=5^{m}$. This means that $a=5^{k}$ for some integer $k \geq 0$. It is clear that k cannot be 0 . If $k \geq 2$, then $(a-1)!+1=5^{l}$ for some $l \geq 1$, but $a-1=5^{k}-1>5$, so $5 \mid(a-1)$!, which is not possible because $5 \mid(a-1)!+1$. This means that $k=1$ and $a=5$. In this case, $5!+5=125$, which gives us the solution $(5,5)$.
Let us now assume that $1 \leq b<a$. Let us first assume that $b=1$. Then $a+1=5^{x}$ and $a!+1=5^{y}$ for integers $x, y \geq 1$. If $x \geq 2$, then $a=5^{x}-1 \geq 5^{2}-1>5$, so $5 \mid a!$. However, $5 \mid 5^{y}=a!+1$, which leads to a contradiction. We conclude that $x=1$ and $a=4$. From here $a!+b=25$ and $b!+a=5$, so we get two more solutions: $(1,4)$ and $(4,1)$.
Now we focus on the case $1<b<a$. Then we have $a!+b=5^{x}$ for $x \geq 2$, so $b \cdot\left(\frac{a!}{b}+1\right)=5^{x}$, where $b \mid a$! because $a>b$. Because $b \mid 5^{x}$ and $b>1$, we have $b=5^{z}$ for $z \geq 1$. If $z \geq 2$, then $5<b<a$, so $5 \mid a$!, which means that $\frac{a!}{b}+1$ cannot be a power of 5 . We conclude that $z=1$ and $b=5$. From here $5!+a$ is a power of 5 , so $5 \mid a$, but $a>b=5$, which gives us $a \geq 10$. However, this would mean that $25|a!, 5| b$ and $25 \nmid b$, which is not possible, because $a!+b=5^{x}$ and $25 \mid 5^{x}$.
We conclude that the only solutions are $(1,4),(4,1)$ and $(5,5)$.

Problem 2.

Prove that for all non-negative real numbers x, y, z, not all equal to 0 , the following inequality holds

$$
\frac{2 x^{2}-x+y+z}{x+y^{2}+z^{2}}+\frac{2 y^{2}+x-y+z}{x^{2}+y+z^{2}}+\frac{2 z^{2}+x+y-z}{x^{2}+y^{2}+z} \geqslant 3 .
$$

Determine all the triples (x, y, z) for which the equality holds.

Solution. Let us first write the expression L on the left hand side in the following way

$$
\begin{aligned}
L & =\left(\frac{2 x^{2}-x+y+z}{x+y^{2}+z^{2}}+2\right)+\left(\frac{2 y^{2}+x-y+z}{x^{2}+y+z^{2}}+2\right)+\left(\frac{2 z^{2}+x+y-z}{x^{2}+y^{2}+z}+2\right)-6 \\
& =\left(2 x^{2}+2 y^{2}+2 z^{2}+x+y+z\right)\left(\frac{1}{x+y^{2}+z^{2}}+\frac{1}{x^{2}+y+z^{2}}+\frac{1}{x^{2}+y^{2}+z}\right)-6
\end{aligned}
$$

If we introduce the notation $A=x+y^{2}+z^{2}, B=x^{2}+y+z^{2}, C=x^{2}+y^{2}+z$, then the previous relation becomes

$$
L=(A+B+C)\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)-6
$$

Using the arithmetic-harmonic mean inequality or Cauchy-Schwartz inequality for positive real numbers A, B, C, we easily obtain

$$
(A+B+C)\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right) \geqslant 9
$$

so it holds $L \geqslant 3$.
The equality occurs if and only if $A=B=C$, which is equivalent to the system of equations

$$
x^{2}-y^{2}=x-y, \quad y^{2}-z^{2}=y-z, \quad x^{2}-z^{2}=x-z .
$$

It follows easily that the only solutions of this system are
$(x, y, z) \in\{(t, t, t) \mid t>0\} \cup\{(t, t, 1-t) \mid t \in[0,1]\} \cup\{(t, 1-t, t) \mid t \in[0,1]\} \cup\{(1-t, t, t) \mid t \in[0,1]\}$.

PSC Remark We feel the equality case needs more explanations in order to have a complete solution, our suggestion follows:
Clearly if x, y, z are all equal and not 0 satisfy the condition. Now suppose that not all of them are equal it means we can't simultaneously have $x+y=y+z=z+x=1$ otherwise we would have all x, y, z equal to $\frac{1}{2}$ which we already discussed. We can suppose now that $x=y$ and $y+z=z+x=1$ where we get $z=1-x$. So, all triples which satisfy the equality are $(x, y, z)=(a, a, a),(b, b, 1-b)$ and all permutations for any $a>0$ and $b \in[0,1]$

Problem 3.

Alice and Bob play the following game on a 100×100 grid, taking turns, with Alice starting first. Initially the grid is empty. At their turn, they choose an integer from 1 to 100^{2} that is not written yet in any of the cells and choose an empty cell, and place it in the chosen cell. When there is no empty cell left, Alice computes the sum of the numbers in each row, and her score is the maximum of these 100 sums. Bob computes the sum of the numbers in each column, and his score is the maximum of these 100 sums. Alice wins if her score is greater than Bob's score, Bob wins if his score is greater than Alice's score, otherwise no one wins.
Find if one of the players has a winning strategy, and if so which player has a winning strategy.
Solution. We denote by (i, j) the cell in the i-th line and in the j-th column for every $1 \leq i, j \leq n$. Bob associates the following pair of cells : $(i, 2 k+1),(i, 2 k+2)$ for $1 \leq i \leq 100$ and $0 \leq k \leq 49$ except for $(i, k)=(100,0)$ and $(100,1)$, and the pairs $(100,1),(100,3)$ and (100, 2), (100, 4).
Each time Alice writes the number j in one of the cell, Bob writes the number $100^{2}+1-j$ in the other cell of the pair.
One can prove by induction that after each of Bob's turn, for each pair of cell, either there is a number written in each of the cell of the pair, or in neither of them. And that if a number j is written, $100^{2}+1-j$ is also written. Thus Bob can always apply the previous strategy (since $j=100^{2}+1-j$ is impossible).
At the end, every line has sum $\left(100^{2}+1\right) \times 50$.
Assume by contradiction that Alice can stop Bob from winning if he applies this strategy. Let c_{j} be the sum of the number in the j-th column for $1 \leq j \leq 100$: then $c_{j} \leq 50\left(100^{2}+1\right)$. Note that:

$$
100 \times 50\left(100^{2}+1\right) \geq c_{1}+\cdots+c_{100}=1+\cdots+100^{2}=\frac{100^{2}\left(100^{2}+1\right)}{2}=100 \times 50\left(100^{2}+1\right)
$$

Thus we have equality in the previous inequality : $c_{1}=\cdots=c_{100}=50\left(100^{2}+1\right)$. But if a is the number written in the case $(100,1)$ and b the number written in the case $(100,2)$, then $c_{1}-b+c_{2}-c=99\left(100^{2}+1\right)$. Thus $b+c=100\left(100^{2}+1\right)-99\left(100^{2}+1\right)=100^{2}+1$: by hypothesis c is also written in the cell $(100,3)$ which is a contradiction.
Thus Bob has a winning strategy

Problem 4.

Let $A B C$ be an acute triangle with circumcenter O. Let D be the foot of the altitude from A to $B C$ and let M be the midpoint of $O D$. The points O_{b} and O_{c} are the circumcenters of triangles $A O C$ and $A O B$, respectively. If $A O=A D$, prove that the points A, O_{b}, M and O_{c} are concyclic.

Solution.

Note that $A B=A C$ cannot hold since $A O=A D$ would imply that O is the midpoint of $B C$, which is not possible for an acute triangle. So we may assume without loss of generality that $A B<A C$.
Let M_{b} and M_{c} be the midpoints of $A C$ and $A B$, respectively. Since $\angle A M_{b} O=\angle A M_{c} O=$ $90^{\circ}=\angle A M O$ (the latter since $A O=A D$), the pentagon $A M_{b} O M M_{c}$ is cyclic.
Next, notice that $A M$ is the perpendicular bisector of $O D, O_{b} O_{c}$ is the perpendicular bisector of $A O$ and $M_{b} M_{c}$ is the perpendicular bisector of $A D$. Hence these three lines are concurrent - denote their common point by T.

The quadrilateral $A O_{b} M O_{C}$ is cyclic if and only if $A T \cdot T M=O_{b} T \cdot O_{c} T$. From the cyclic $A M_{b} M M_{c}$ we have $A T \cdot T M=M_{b} T \cdot M_{c} T$. Hence it now suffices to argue $M_{b} T \cdot M_{c} T=O_{b} T \cdot O_{c} T$ - or equivalently, that M_{b}, M_{c}, O_{b} and O_{c} are concyclic.

We assume that $\angle A O B<90^{\circ}$ and $\angle A O C>90^{\circ}$ so that O_{c} is in the interior of triangle $A O B$ and O_{b} in external to the triangles $A O C$ (the other cases are analogous and if $\angle A O B=90^{\circ}$ or $\angle A O C=90^{\circ}$, then $M_{b} \equiv O_{b}$ or $M_{c} \equiv O_{c}$ and we are automatically done). We have

$$
\angle M_{c} M_{b} O_{b}=90^{\circ}+\angle A M_{b} M_{c}=90^{\circ}+\angle A C B
$$

as well as (since $O_{c} O_{b}$ is a perpendicular bisector of $A O$ and hence bisects $\angle A O_{C} O$)

$$
\angle M_{c} O_{c} O_{b}=180^{\circ}-\angle O O_{c} O_{b}=90^{\circ}+\frac{\angle A O_{c} M_{c}}{2}
$$

$$
=90^{\circ}+\frac{\angle A O_{c} B}{4}=90^{\circ}+\frac{\angle A O B}{2}=90^{\circ}+\angle A C B
$$

and therefore $O_{b} M_{b} O_{c} M_{c}$ is cyclic, as desired.

